Процесс 3D-печати отличается сложностью и дороговизной, к тому же готовые трехмерные объекты часто получаются не самой приятной наружности. Как правило, при печати по технологии FDM внешние поверхности готовых изделий оказываются ребристыми. Чтобы этого избежать, требуется качественная финишная обработка. Как она выполняется?
Практически сразу с момента появления этого проекта стали придумываться способы обработки готовых изделий в 3D, чтобы сгладить их поверхности. Основной акцент делался на отличительных особенностях термопластиков: способности плавиться под высокими температурами и размягчаться при контакте с химикатами. Как правило, в ходе термообработки регулировать степень нагревания поверхности просто невозможно, поэтому пластика может вскипеть, просесть или просто выделять токсичные пары.
Более перспективной считается обработка химикатами, правда, и тут есть свои сложности, в первую очередь технологические. Кроме того, разные пластики по-разному вступали в реакции с реагентами, и результат трудно предугадать. Например, ацетон отлично растворяет пластик ABS, а в случае с PLA-пластиком он бессилен. Лимонен действует полностью наоборот. Именно поэтому химическое сглаживание применяется в основном по отношению к ABS-пластику, который более популярен и доступен с точки зрения цены.
Типичным растворителем для этого вида пластика является ацетон. Благодаря хорошей растворяющей способности его можно использовать и как клеевой состав, когда требуется создание моделей из ABS-пластика. Такой же клей целесообразно применять для ремонта расслоений детали или при появлении трещин на ней. Особенность процесс сглаживания в повышении не только эстетичности детали, но и ее прочности: благодаря монолитной внешней оболочке модель становится прочнее и герметичнее.
Ручная обработка деталей 3d возможна благодаря инструменту Makeraser. Изначально дизайнеры стремились обработать детали простой кисточкой, но этот процесс требовал определенных умений, поскольку размягченный пластик легко деформировался под воздействием щетинок. Соответственно, на детали могли остаться следы, которые не всегда выравнивались. С другой стороны, можно было нанести ацетон лишь выборочно, благодаря чему не подвергались сглаживанию острые углы. Из-за слишком больших трудностей и был создан инструмент Makeraser, являющийся по сути простым фломастером с резервуаром. Он наполняется посредством ацетона или ацетонового клея, после чего встроенным скребком снимает модели с рабочей поверхности. Это практичный и универсальный инструмент, правда, его рационально использовать, если нужно склеить части модели или нанести ABS-пластик или ацетоновый клей на поверхность рабочего стола.
Этот метод обработки поверхности деталей считается перспективным. ABS-пластик следует выдержать в этом растворе не больше 10 секунд – этого времени вполне достаточно, чтобы растворился внешний слой изделия. Однако конкретное время на выдержку детали варьируется в зависимости от того, какого качества модель и какова концентрация ацетона. После выдержки модель должна полежать на воздухе, чтобы ацетон испарился. Этот метод обработки поверхности 3D-деталей прост и удобен, но регулировать его нелегко. Если передержать модель, слои просто будут растворяться, а мелкие детали ее потеряются. Если ацетон загрязнится пластиком одного цвета, при обработке другой модели могут возникнуть разводы пятен. А потому более удобным и контролируемым процессом является обработка деталей посредством ацетоновых паров.
С помощью погружения в ацетон можно эффективно обработать детали из популярного ABS-пластика с глянцевой поверхностью. Суть метода в следующем: модель помещается в тару, в которой налито небольшое количество ацетона. Сам трехмерный объект не должен соприкасаться с растворителем, поэтому его нужно поставить на платформу или подвесить над тарой. При этом важную роль играет материал платформы. Например, дерево не подходит, поскольку оно будет склеиваться с нижней поверхностью модели, и потом ее нельзя будет отделить. Лучше всего взять подставку из металла.
После того, как модель размещена, емкость подогревается, повышая тем самым температуру ацетона. Он начнет медленно испаряться. Помните о том, что кипятить ацетон нельзя, поскольку на модели будет скапливаться конденсат, который затем выльется в разводы на поверхности. Идеальной температурой является максимум 56 градусов. Готовая модель должна проветриться, пока не затвердеет внешняя поверхность. При обработке парами нужно учесть толщину стенок трехмерной модели. Оболочка должна иметь оптимальную толщину, чтобы выдержать потерю внешнего слоя, поскольку тонкие черты могут просто раствориться в составе.
Ацетон – это не самое опасное вещество, однако надо быть осторожным при работе с ним. Дыхание паров может привести к тому, что в легких образуется отек, который запросто может перерасти в воспаление. Первый признак отравления – неприятные ощущения с головокружением, раздражение слизистых оболочек. В идеале работу с ацетоном нужно вести с перчатках и очках. Ацетон – воспламеняемое вещество, а если его концентрация будет выше 13% в воздушной смеси, может возникнуть и взрыв. Если работы ведутся с парами ацетона, помещение должно хорошо и вовремя проветриваться. Для нагревания химиката нельзя использовать открытый огонь, поскольку по мере вытеснения воздуха из сосуда ацетон будет охлаждаться и вступит в контакт с огнем.
Кроме бесплатных вариантов инструментов, на основе которых могут обрабатываться 3D-детали, существуют коммерческие проекты. Один из них создан компанией Stratasys и называется Finishing Touch. Ее отличительная особенность – в возможности обработки любых вариаций ABS-пластика высокого качества. Процесс обработки легкий и простой, поскольку имеется система рециркуляции, а это дает возможность сэкономить на растворителе и не загрязнять воздуха вредными парами. Разработчики устройства обещают, что оно будет совместимо с пластиком ABS и PLA. Но при этом обработка все-таки будет вестись с применением ацетона, несмотря на то, что полилактид (PLA), растворяется в нем плохо.
Кроме химической обработки требуется и механическая обработка готовых трехмерных деталей. Чаще всего деталь подвергается шлифовке, пескоструйной обработке и обработке парами растворителя. Несмотря на то, что различные методы 3D-печати позволяют получать высокоточные модели, без их финишной обработки не обойтись. Связано это с тем, что в некоторых случаях появляются трещины на деталях или расслаиваются слои. Для придания детали эстетичного облика применяется метод ошкуривания, который позволяет убрать видимые дефекты с поверхности моделей.
Этот процесс играет важную роль, например, при создании ювелирных изделий или экспонатов на выставку.
Созданные на 3D-принтере модели могут обрабатываться и наждачной бумагой. Это делается для получения гладкой поверхности, чтобы не были заметны места стыковки слоев. Чтобы их убрать, потребуется незначительная доводка наждачной шкуркой. Пластиковые детали также могут быть обработаны на шлифовальном станке, правда, использование наждачной бумаги и ошкуривания более рационально и удобно, поскольку можно контролировать каждый сантиметр модели. Наждачная бумага идеально подходит для обработки мелких деталей, чтобы убрать с них незначительные дефекты. При применении этих методов следует учитывать, что слои материала при ошкуривании, например, будут уменьшаться. И очень важно сохранить первоначальную форму трехмерного объекта.
Этот способ предполагает управление оператором соплом, через которое на деталь распыляется мелкодисперсный материал. Процесс пескоструйной обработки оперативный – всего 10 минут, при этом деталь становится эстетичнее и аккуратнее. Суть метода в том, чтобы поместить готовую деталь в камеру, куда будет направляться поток мелких частиц. Они по мере воздействия будут обеспечивать гладкость поверхности 3D-детали.
При пескоструйной обработке на деталь, помещенную в закрытую камеру, направляется поток мелких пластиковых частиц, в результате чего через 5-10 минут поверхность становится гладкой. Метод хорош тем, что на его основе можно работать с любым материалом, к тому же процесс обработки простой.